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bstract

The thermodynamic quantities of high temperature metals and alloys are studied using the statistical moment method, going beyond the quasi-
armonic approximations. Including the power moments of the atomic displacements up to the fourth order, the Helmholtz free energies and
he related thermodynamic quantities are derived explicitly in closed analytic forms. The configurational entropy term is taken into account by
sing the tetrahedron cluster approximation of the cluster variation method (CVM). The energetics of the binary (Ta–W and Mo–Ta) alloys are

reated within the framework of the first-principles TB-LMTO (tight-binding linear muffin tin orbital) method coupled to CPA (coherent potential
pproximation) and GPM (generalized perturbation method). The equilibrium phase diagrams are calculated for the refractory Ta–W and Mo–Ta
cc alloys. In addition, the mechanical properties, i.e., temperature dependence of the elastic moduli C11, C12 and C44 and those of the ideal tensile
nd shear strengths of the bcc Ta–W and Ta-Mo alloys have been also studied.

2007 Published by Elsevier B.V.
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. Introduction

The calculations of the thermodynamic quantities and the
quilibrium phase diagrams are of great importance for the pur-
ose of materials designs and developments of high temperature
echnological alloys. It is the purpose of the present article to
tudy the thermodynamic quantities of metals and alloys using
he moment method in the quantum statistical mechanics, here-
fter referred to as the statistical moment method (SMM) [1–10].
e firstly derive the Helmholtz free energy Ψ (V, T), of met-

ls and alloys using the fourth order moment approximation,
nd then calculate the thermodynamic quantities, such as the
hermal lattice expansions, root mean square atomic displace-

ents, specific heats, Grüneisen constants and elastic moduli.
he application calculations using the SMM will be done for
he high temperature bcc alloys, like Ta–W and Mo–Ta systems.
ecently, much attention has been paid to alloy systems made of

efractory metals of columns VB and VIB of the Periodic Table
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11,12], and in particular, Nb, Mo, Ta, and W that display high
elting temperature space and nuclear applications. In view of

his, we calculate the equilibrium phase diagram of Ta–W and
o–Ta alloys including the effects of thermal lattice vibrations.
In this paper, we also present a new theoretical scheme on the

deal strengths of metals and alloys including the anharmonicity
ffects of thermal lattice vibrations on the basis of the statistical
oment method (SMM) [1–10]. In analyzing the mechanical

roperties of materials, especially those of the high tempera-
ure materials it is essential to take into account the temperature
ffects since they depend strongly and sensitively on the tem-
eratures. The ideal tensile and shear strengths are calculated
oth for the transition elements like bcc Mo and W crys-
als, and Mo–Ta, Ta–W alloys in comparison with the ordered
inary alloys, Fe3Al and FeAl compounds. It is known that the
ntermetallic compounds like FeAl alloys have the appealing
igh-temperature and corrosion resistance properties and they
re candidates as novel industrial structural materials [13–15].
The present paper is organized as follows: in Section 2, we
resent the principles of calculations for the thermodynamic
uantities, elastic moduli and ideal strengths of metals and alloys
t finite temperatures, including the anharmonicity effects of

mailto:kmjindo@issp.u-tokyo.ac.jp
dx.doi.org/10.1016/j.jallcom.2006.12.163
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hermal lattice vibrations. The results of numerical calculations
nd the related discussions are given in Section 3. The final
ection 4 is devoted to the conclusions.

. Theory

.1. Effects of thermal lattice vibrations

We derive the thermodynamic quantities of metals and alloys,
aking into account the higher (fourth) order anharmonic con-
ributions of the thermal lattice vibrations going beyond the
uasi-harmonic (QH) approximation [16]. Within the fourth
rder moments approximation of the SMM the free energy of
he system is given by:

= U0 + 3Nθ[X + ln(1 − e−2X)]

+ 3N

{
θ2

k2

[
γ2X

2 coth2X − 2

3
γ1

(
1 + X coth X

2

)]

+ 2θ3

k4

[
4

3
γ2

2 X coth X

(
1 + X coth X

2

)

− 2γ1(γ1 + 2γ2)

(
1 + X coth X

2

)
(1 + X coth X)

]}
(1)

here X = h̄ω/2θ, θ being kBT. k and γ i are second and fourth
rder vibrational constants [1–10], respectively.

With the aid of the free energy formula Ψ = E − TS, one
an find the thermodynamic quantities of metals and alloy sys-
ems. The specific heats and elastic moduli at temperature T
re directly derived from the free energy Ψ of the system. For
nstance, the isothermal compressibility χT is given by:

T = 3(a/a0)3

[2P + (1/3N)(3
√

3/4a)(∂2Ψ/∂r2)T]
(2)

here

∂2Ψ

∂r2 = 3N

{
1

6

∂2U0

∂r2 + θ

[
X coth X

2k

∂2k

∂r2 − 1

4k2

(
∂k

∂r

)2

×
(

X coth X + X2

sinh2 X

)]}
(3)

n the other hand, the specific heats at constant volume Cv is:

v = 3NkB

{
X2

sinh2 X
+ 2θ

k2

[(
2γ2 + γ1

3

) X3 coth X

sinh2 X
+ γ1

3

×
(

1 + X2

sinh2 X

)
− γ2

(
X4

sinh2 X
+ 2X4 coth2 X

sinh2 X

)]}

(4)

he specific heat at constant pressure Cp is determined from the
hermodynamic relations:

2

p = Cν + 9TVαT

χT
(5)

here αT denotes the linear thermal expansion coefficient and
T the isothermal compressibility. The relationship between the

s
t
〈
s

nd Compounds 452 (2008) 127–132

sothermal and adiabatic compressibilities, χT and χs, is simply
iven by:

s = Cv

Cp

χT (6)

.2. Cluster variation method and energetics of alloys

The configurational entropies of bcc alloys are calculated
sing the tetrahedron cluster approximation of the cluster
ariation method (CVM) [17–19]. The nearest-neighbour and
ext-nearest-neighbour pair probabilities are taken into account
n accordance with the effective pair interaction energies derived
rom the TB-LMTO-CPA formalism, outlined below. The
ntropy expression S(N) for bcc lattice is given by:

xp

(
S(N)

k

)
= ({
}N )12{Point}N

({Ttrh}N )6({1st n Pr}N )4({2nd n Pr}N )3 (7)

In the present study, we will use the so-called generalized
erturbation method (GPM) for the energetics of the bcc alloys
omposed of Ta, Mo and W elements [11,12]. Within the GPM,
nly the configuration-dependent contribution to the total energy
s expressed by an expansion in terms of effective pairwise and

ultisite interactions. Within the GPM, the ordering contribu-
ion to the total energy of an A–B alloy is given by:

({pi
n}) = Edis(c) + 
Eord({pi

n}) (8)

Eord({pn}) =
∞∑

k=1

1

k

′∑
n1,...,nk

V (k)
n1,...,nk

δcn1 · · ·δcnk

= 1

2N

∑
ij

n,m,n�=m

V ij(2)
nm δci

nδc
j
m

+ 1

3N

∑
ij

n, l, m,
n�=m,m�=l,n�=l

V
ijk(3)
nml δci

nδc
j
mδck

l + · · · (9)

ij
s = − 1

π
Im
∫ EF

dE
∑
λμ

G
λμ
(s) G

μλ
(s) 
tλij 
t

μ
ij , . . . (10)

here δcni refers to the fluctuation of concentration on site ni,
cni = pni − c (c is the concentration in B species), and pi is
n occupation number associated with site ni, equal to 1 or 0
epending on whether or not site ni is occupied by a B species.
he V (k)

n1,...,nk
corresponds to a kth-order effective cluster inter-

ction (ECI) involving a cluster of k sites.

.3. Elastic moduli and ideal strengths

We will now present the calculational method of ideal

trengths of metals and alloys. Firstly, we consider the bcc crys-
als and calculate the ideal strength in uniaxial tension along
1 0 0〉 direction, and then calculate the ideal strength in the
hear. In particular we consider the ideal shear strength for the
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Fig. 1. Thermal lattice expansion coefficients calculated for bcc Mo, Ta and W
c
c
a

a
a
c
T
t
a

d

t
W
n

〈
t

〈σ2
j 〉 have the linear temperature dependence, but for higher

temperature region, they increase nonlinearly as increasing the
temperature. The nonlinear increases of 〈u2

j〉 and 〈σ2
j 〉 indicate
K. Masuda-Jindo et al. / Journal of A

1 1 1〉 {1 1 0} slip system, most popular one in the bcc crys-
al.We employ the calculational procedures of the ideal strengths
riginally proposed by Frenkel [20] and Orawan [21]. The ideal
trength in a given deformation mode is proportional to the elas-
ic modulus that governs linear elastic deformation in that mode.
or instance, for the tension in the 〈1 0 0〉 direction in bcc crystal,

he relevant relaxed elastic modulus is given by:

r
〈1 0 0〉 = S−1

11 = (C11 − C12)(C11 + 2C12)

C11 + C12
(11)

here Sij and Cij are the elastic compliances and elastic mod-
li, respectively. In all of the bcc transition metals, the nearest
xtrema along the tensile deformation path is a maximum cor-
esponding to a fcc structure, i.e., the Bain strain, εb = 0.26.

On the other hand, the shear modulus depends sensitively on
oth the shear direction and the shear plane, but, because of the
hreefold symmetry for rotation about 〈1 1 1〉 in bcc crystal, any
hear in a 〈1 1 1〉 direction has a common relaxed modulus of:

r
〈1 1 1〉 = S−1

〈1 1 1〉 =

⎧⎪⎪⎨
⎪⎪⎩

3C44(C11 − C12)

4C44 + C11 − C12
3C44

1 + 2A

(12)

here the elasticity anisotropy parameter is defined by
= 2C44/(C11 − C12). Then, for elastically isotropic materials
ith A = 1, one can get the relation Gr

〈1 1 1〉 = C44. The position
f the energetic extrema also is nearly identical for all types of
hear along 〈1 1 1〉 direction [22,23]. This is because of the rela-
ively open structure of bcc, which has eight nearest neighbors at
distance of 0.866a0 and six next-nearest neighbors at distance
f a0, where a0 is the lattice constant. An applied shear breaks
he symmetry of these neighbors. Again assuming constant vol-
me deformation for comparative purposes, after a relaxed shear
f 0.34, there is a high symmetry crossover point, which is iden-
ical for shear on {1 1 2} or {1 2 3} planes. Shear on planes with
ormals near 〈1 1 2〉 or 〈1 2 3〉 will also pass through this ener-
etic maximum. A slightly different extrema geometry applies
or shears on planes with normals close to 〈1 1 0〉 direction [5,6].
oth high symmetry extrema geometries are only reached if full
tomic relaxation is allowed.

. Results and discussions

.1. Thermodynamic quantities of constituent metals

In Fig. 1, we show the thermal expansion coefficients, αv,
f bcc Mo, Ta and W crystals at zero pressure as a function of
emperature T, together with the experimental results [24]. The
hermal expansion coefficients αv of bcc Mo, Ta and W crystals
re shown by dot-dashed, solid and dashed lines, respectively,
nd they are in good agreement with the corresponding experi-
ental results. In particular, the calculated thermal expansion

oefficients of the bcc Ta crystals are in fairly good agree-

ent with the experimental results except for higher temperature

egion than ∼2000 K. For this higher temperature region, exper-
mental results, by symbols (×) show the anomalous increase
f the thermal expansion coefficients as increasing the temper-

F

l
M

rystals, in comparison with the experimental results ((�) for W and (×) for Ta
rystals). Also shown by symbols (©) are ab initio calculation results by Cohen
nd Gülserem [25].

ture (which might be attributed to the extrinsic causes such
s the oxidisation of the specimen). Instead, the present SMM
alculations of the thermal lattice expansion coefficients of bcc
a crystal (solid curve) are in good agreement with the ab ini-

io theoretical calculations of Ref. [25], symbols (©), using the
nharmonic PIC (particle in a cell) model.

In Fig. 2, we present the calculated root mean square atomic
isplacements 〈u2

j〉, by solid lines, and root mean square rela-

ive displacements 〈σ2
j 〉, by dashed lines, for bcc Mo, Ta and

crystals, as a function of the temperature. The relative mag-
itudes of 〈u2

j〉 and 〈σ2
j 〉 among the bcc elements are such that

u2
j〉Ta

> 〈u2
j〉Mo

> 〈u2
j〉W

and 〈σ2
j 〉

Ta
> 〈σ2

j 〉
Mo

> 〈σ2
j 〉

W
. For

he lower temperature region, i.e., T� 1500 K, both 〈u2
j〉 and
ig. 2. Temperature dependence of root mean square displacements 〈u2
j 〉 (solid

ines) and root mean square relative displacements 〈σ2
j 〉 (dashed lines) for bcc

o, Ta and W crystals.
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he importance of the anharmonicity of thermal lattice vibrations
or the higher temperature region.

.2. Mo–Ta and Ta–W bcc alloys

To calculate the thermodynamic quantities and the equilib-
ium phase diagrams of bcc Mo–Ta and Ta–W alloys, we use the
luster variation method (CVM) [17] and the first-principles TB-
MTO method coupled to the coherent potential approximation

CPA) and the generalized perturbation method (GPM) [11,12].
e calculate the change in the free energy 
Ψ (eV/atom) due

o the inclusion of the thermal vibration effects of bcc Mo–Ta
nd Ta–W bcc alloys as a function of the temperature T; the con-
entrations of tantalum are chosen to be 0.0, 0.1, 0.2, 0.25, 0.3,
.33, 0.4 0.5, 0.6, 0.67, 0.7, 0.8, 0.9 and 1.0. Here, the change in
he free energy 
Ψ corresponds to the ordering energy defined
y “
Eord = EAA + EBB − 2EAB” in the conventional treatments
ithout thermal lattice vibration effects.
The resulting equilibrium phase diagrams of bcc Ta–W alloys

re presented in Fig. 3. The dark circles connected by solid lines
epresent the phase boundaries between B2 and A2 phases of

cc Ta–W alloys, including the thermal lattice vibration effects
hile the white circles connected by dashed lines are the phase
oundaries without including the thermal lattice vibration effects
11,12]. It can be seen in Fig. 3 that the B2 phases of Ta–W alloys

ig. 3. The calculated equilibrium phase diagram and melting temperatures of
a–W alloys: cal-2 (cal-1) represent the phase boundaries between B2 and A2
hases, calculated by including (not including) the effects of thermal lattice
ibrations.
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re stabilized more strongly by including the anharmonicity
ffects of thermal lattice vibrations at higher Ta concentration.
his theoretical finding is of great interest since the inclusion
f the thermal lattice vibration effects is believed in most cases
o destabilize the ordered phases as in the CuAu alloys [26].
n addition, we have also calculated the melting temperatures
m (critical temperature of the crystalline stability) of the dis-
rdered Mo–Ta and Ta–W alloys using the SMM [1–10], and
resented the results of melting temperatures Tm of Ta–W alloys
n Fig. 3, in comparison with the experimental liquidus (dashed
ine) and solidus (solid line) curves. Although the direct com-
arison between the theoretical Tm and experimental liquidus
nd solidus curves is not possible, one sees that there are good
orrelations between the calculation and experimental results.

.3. Elastic moduli and ideal strength

In Fig. 4, we present the calculated elastic constants C11, C12,
44 and bulk modulus B, of bcc W crystal, as a function of the

emperature, by using the orthogonal TB d-band approach [27].
ne sees in Fig. 4 that the calculated elastic moduli C11, C12 and
44 of bcc W crystals are in good agreement with the correspond-

ng experimental results [28], especially for lower temperature
egion. One sees in Fig. 4 that the elastic constants are decreasing
unction of the temperature, and decreasing rates of C11 and C12
re considerably larger than those of C44: the decreasing rates
f C44 are quite small for the whole temperature range. We have
lso calculated the elastic constants of bcc Mo crystal using the
nvironment dependent sp3d5-basis TB method [29] based on
he density functional theory (DFT), and found that the calcu-
ated features of the elastic constants are quite similar to those
btained by the orthogonal TB method. The elastic constants of
cc Mo crystal are decreasing function of the temperature, and
he tendency of the decreasing rates of C11, C12, C44 and B are

imilar to those of bcc W crystal calculated by the orthogonal
-band scheme. The experimental elastic constants of bcc W
rystals [28] are presented by symbols (©) in Fig. 4, but they
re limited to lower temperature region than T = 300 K, and we

ig. 4. Temperature dependence of elastic constants, C11, C12, C44 and B of bcc
crystal, in units of GPa.
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ig. 5. Tensile and shear strengths of bcc W crystal at T = 10 K (1), 100 K (2),
00 K (3), 500 K (4), 700 K (5), 900 K (6), 1100 K (7), and 1300 K (8). Also
hown by symbols (©) are ideal strengths at 0 K, calculated by using ab initio
F theory [22,23].

an not compare the present theoretical findings (the decreasing
ates) of the elastic constants with the experimental observations
or higher temperature region. However, we note that the exper-
mental results of the elastic constants of NaCl crystal clearly
how the similar tendency of weak temperature dependence of
44 as calculated here for bcc Mo and W crystals [30].

The ideal strengths of bcc Mo, Ta and W bcc crystals and
o–Ta and Ta–W alloys are calculated by using Eqs. (11) and

12) both for the tensile and shear deformations. In Fig. 5, we
resent the calculated ideal strengths of bcc W crystals. The ideal
trengths of Ta50W50 bcc alloys are presented in Fig. 6. In both
igs. 5 and 6, the upper (a) and lower (b) figures are the tensile
nd shear strengths for temperature range 10–1300 K respec-
ively. For bcc Mo, Ta and W crystals and Mo–Ta and Ta–W bcc
lloys, the tensile and shear strengths are decreasing function of
he temperature, and the tensile strengths are ∼2.0 times larger
han those of the shear strengths. In Fig. 6, one sees that both
ensile and ideal strengths of bcc Ta50W50 alloys become lower

approximately ∼70%) compared to those of bcc W crystal. The
ecreasing rates of the ideal strengths (with increasing temper-
tures) of the bcc Mo, Ta and W crystals, and their alloys are
onsiderably larger than those of the intermetallic compounds

w
t
e
f

ig. 6. Ideal tensile and shear strengths of Ta50W50 alloy at T = 10 K (1), 100 K
2), 300 K (3), 500 K (4), 700 K (5), 900 K (6), 1100 K (7), and 1300 K (8).

ike Fe3Al and FeAl [31], which exhibit much lower decreasing
ates of the ideal strengths. The calculated ideal strengths are
lso compared with the experimental results, e.g., tensile tests
f nominally dislocation-free “whiskers” and nano-indentation
ests on films. Mikhailovskii et al. [32] have studied the tensile
racture of microcrystalline W ”whiskers“with diameters in the
ange 600–2600 Å and along axes parallel to 〈1 1 0〉 direction.
he maximum strength for W crystal was 28.3 GPa. On the other
and, nano-indentation tests probe the mechanical response to
ndentation by an indenter that can be no more than a few tens
f nanometers in diameter. If the specimen has a low dislocation
ensity, then the nano-indenter may probe essentially defect-free
aterial. If, in addition, the surface of the crystal is treated to

revent premature failure from the interface, then failure may be
ade to originate in the region of maximum stress beneath the

nterface. It follows that nano-indentation studies are a promis-
ng method for measuring the bulk value of ideal strength. Also
hown in Fig. 5 by symbols (©) are those values calculated
y using the ab initio DF theory (at 0 K) [22,23]. The calculated
hear strengths of bcc W crystals are shown in Fig. 5(b), together

ith the previous DFT calculations which can be compared with

he experimental shear strengths inferred from nano-indentation
xperiments, i.e., corrected experimental values of 16.5–18 GPa
rom 26 to 28 GPa [28,33].
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. Conclusions

We have presented the SMM formalism combined with the
VM and investigated the thermodynamic properties of high

emperature bcc metals and alloys composed of Mo, Ta and W
lements. The linear thermal expansion coefficients, bulk mod-
lus and root-mean-square atomic displacements are calculated
s a function of the temperature as well as a function of the
lloy compositions. The calculated results of the thermodynamic
uantities are in good agreement with the corresponding exper-
mental results. The equilibrium phase diagrams are calculated
or bcc Ta–Mo and Ta–W alloys, including the anharmonicity of
hermal lattice vibrations. It has been shown that the B2 phases
f Ta–W alloys are stabilized more strongly by including the
nharmonicity of thermal lattice vibrations for higher Ta con-
entration region. The similar tendency has also seen found for
a–Mo alloys.

Using the free energy formulae derived by the statistical
oment method, we have studied the temperature dependence

f ideal strengths of metals (Mo, Ta and W) and Ta–Mo and
a–W alloys. In general, we have found that both tensile and
hear strengths of the metals and alloys are decreasing func-
ion of the temperature and closely related to the characteristic
ecreasing behaviors of elastic constants C11, C12 and C44 of
he given crystals: the decreasing rates of elastic constants C11
nd C12 are considerably larger than those of the elastic constant
44. The calculated magnitudes of ideal strengths are in good
greement with the available experimental results.
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